Dynamics of vacuoles and H+-pyrophosphatase visualized by monomeric green fluorescent protein in Arabidopsis: artifactual bulbs and native intravacuolar spherical structures.

نویسندگان

  • Shoji Segami
  • Sachi Makino
  • Ai Miyake
  • Mariko Asaoka
  • Masayoshi Maeshima
چکیده

We prepared Arabidopsis thaliana lines expressing a functional green fluorescent protein (GFP)-linked vacuolar H(+)-pyrophosphatase (H(+)-PPase) under the control of its own promoter to investigate morphological dynamics of vacuoles and tissue-specific expression of H(+)-PPase. The lines obtained had spherical structures in vacuoles with strong fluorescence, which are referred to as bulbs. Quantitative analyses revealed that the occurrence of the bulbs correlated with the amount of GFP. Next, we prepared a construct of H(+)-PPase linked with a nondimerizing GFP (mGFP); we detected no bulbs. These results indicate that the membranes adhere face-to-face by antiparallel dimerization of GFP, resulting in the formation of bulbs. In plants expressing H(+)-PPase-mGFP, intravacuolar spherical structures with double membranes, which differed from bulbs in fluorescence intensity and intermembrane spacing, were still observed in peripheral endosperm, pistil epidermis and hypocotyls. Four-dimensional imaging revealed the dynamics of formation, transformation, and disappearance of intravacuolar spherical structures and transvacuolar strands in living cells. Visualization of H(+)-PPase-mGFP revealed intensive accumulation of the enzyme, not only in dividing and elongating cells but also in mesophyll, phloem, and nectary cells, which may have high sugar content. Dynamic morphological changes including transformation of vacuolar structures between transvacuolar strands, intravacuolar sheet-like structures, and intravacuolar spherical structures were also revealed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of Vacuoles and H+-Pyrophosphatase Visualized by Monomeric Green Fluorescent Protein in Arabidopsis: Artifactual Bulbs and Native Intravacuolar Spherical StructuresW OPEN

We prepared Arabidopsis thaliana lines expressing a functional green fluorescent protein (GFP)-linked vacuolar H+pyrophosphatase (H+-PPase) under the control of its own promoter to investigate morphological dynamics of vacuoles and tissue-specific expression of H+-PPase. The lines obtained had spherical structures in vacuoles with strong fluorescence, which are referred to as bulbs. Quantitativ...

متن کامل

Dynamics of Vacuoles and H+-Pyrophosphatase Visualized by Monomeric Green Fluorescent Protein in Arabidopsis: Artifactual Bulbs and Native Intravacuolar Spherical StructuresW

We prepared Arabidopsis thaliana lines expressing a functional green fluorescent protein (GFP)-linked vacuolar H+pyrophosphatase (H+-PPase) under the control of its own promoter to investigate morphological dynamics of vacuoles and tissue-specific expression of H+-PPase. The lines obtained had spherical structures in vacuoles with strong fluorescence, which are referred to as bulbs. Quantitativ...

متن کامل

REGULATOR OF BULB BIOGENESIS1 (RBB1) Is Involved in Vacuole Bulb Formation in Arabidopsis

Vacuoles are dynamic compartments with constant fluctuations and transient structures such as trans-vacuolar strands and bulbs. Bulbs are highly dynamic spherical structures inside vacuoles that are formed by multiple layers of membranes and are continuous with the main tonoplast. We recently carried out a screen for mutants with abnormal trafficking to the vacuole or aberrant vacuole morpholog...

متن کامل

Vegetative and sperm cell-specific aquaporins of Arabidopsis highlight the vacuolar equipment of pollen and contribute to plant reproduction.

The water and nutrient status of pollen is crucial to plant reproduction. Pollen grains of Arabidopsis (Arabidopsis thaliana) contain a large vegetative cell and two smaller sperm cells. Pollen grains express AtTIP1;3 and AtTIP5;1, two members of the Tonoplast Intrinsic Protein subfamily of aquaporins. To address the spatial and temporal expression pattern of the two homologs, C-terminal fusion...

متن کامل

Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression.

Aquaporins facilitate the uptake of soil water and mediate the regulation of root hydraulic conductivity (Lp(r)) in response to a large variety of environmental stresses. Here, we use Arabidopsis (Arabidopsis thaliana) plants to dissect the effects of salt on both Lp(r) and aquaporin expression and investigate possible molecular and cellular mechanisms of aquaporin regulation in plant roots und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Plant cell

دوره 26 8  شماره 

صفحات  -

تاریخ انتشار 2014